翻訳と辞書
Words near each other
・ Orthocomotis parexpansa
・ Orthocomotis phenax
・ Orthocomotis prochaldera
・ Orthocomotis pseudolivata
・ Orthocomotis puyoana
・ Orthocomotis sachatamiae
・ Orthocomotis shuara
・ Orthocomotis similis
・ Orthocomotis smaragditis
・ Orthocomotis sucumbiana
・ Orthocomotis tambitoa
・ Orthocomotis trissophricta
・ Orthocomotis twila
・ Orthocomotis volochilesia
・ Orthocomotis yanayacu
Orthocompact space
・ Orthocone
・ OrthoCor
・ Orthocormus
・ Orthocorybantians
・ Orthocycloceras
・ OrthoDB
・ Orthodenticle
・ Orthodenticle homeobox 2
・ Orthodera ministralis
・ Orthodera novaezealandiae
・ Orthodera rubrocoxata
・ Orthodes
・ Orthodes jamaicensis
・ Orthodes majuscula


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Orthocompact space : ウィキペディア英語版
Orthocompact space
In mathematics, in the field of general topology, a topological space is said to be orthocompact if every open cover has an interior preserving open refinement. That is, given an open cover of the topological space, there is a refinement which is also an open cover, with the further property that at any point, the intersection of all open sets in the refinement containing that point, is also open.
If the number of open sets containing the point is finite, then their intersection is clearly open. That is, every point finite open cover is interior preserving. Hence, we have the following: every metacompact space, and in particular, every paracompact space, is orthocompact.
Useful theorems:
* Orthocompactness is a topological invariant; that is, it is preserved by homeomorphisms.
* Every closed subspace of an orthocompact space is orthocompact.
* A topological space X is orthocompact if and only if every open cover of X by basic open subsets of X has an interior-preserving refinement that is an open cover of X.
* The product X × () of the closed unit interval with an orthocompact space X is orthocompact if and only if X is countably metacompact. (B.M. Scott) 〔 B.M. Scott, Towards a product theory for orthocompactness, "Studies in Topology", N.M. Stavrakas and K.R. Allen, eds (1975), 517–537.〕
* Every orthocompact space is countably orthocompact.
* Every countably orthocompact Lindelöf space is orthocompact.
==References==

* P. Fletcher, W.F. Lindgren, ''Quasi-uniform Spaces'', Marcel Dekker, 1982, ISBN 0-8247-1839-9. Chap.V.


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Orthocompact space」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.